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An overview of recent activity in the field of neural networks is presented. The 
long-range aim of this research is to understand how the brain works. First 
some of the problems are stated and terminology defined; then an attempt is 
made to explain why physicists are drawn to the field, and their main potential 
contribution. In particular, in recent years some interesting models have been 
introduced by physicists. A small subset of these models is described, with par- 
ticular emphasis on those that are analytically soluble. Finally a brief review of 
the history and recent developments of single- and multilayer perceptrons is 
given, bringing the situation up to date regarding the central immediate 
problem of the field: search for a learning algorithm that has an associated 
convergence theorem. 
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1. I N T R O D U C T I O N  

I present a brief overview of a field that is relatively new to physicists. I 
choose to describe a small subset of the problems and some models; my 
choices are only a reflection of my personal tastes. Moreover, my bias is set 
mainly by ignorance; physicists should realize that the field of neural 
networks has been active (under different names) for a few decades. In a 
recent meeting ten different scientific disciplines were represented, and the 
weight of physicists is probably less then 10% in terms of their con- 
tributions. This overview does not attempt to present the prevalent 
attitudes in the field, or to serve as a comprehensive introductory list of 
references. 2 

i Department of Electronics, Weizmann Institute of Science, Rehovot, Israel. 
2 For recent reviews in the physics literature see Refs. 1; for reviews and introductory texts 

from other fields see Refs. 2. 
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The ultimate goal of research in the field of neural networks is to gain 
understanding of how the brain works. (3) In my opinion none of the work 
on neural networks in the physics literature brings this goal any closer. I 
believe that the field is intriguing and exciting enough to justify research 
without making unfounded claims to the contrary. Of course, one should 
keep the ultimate goal in mind, and question whether certain assumptions 
made are or are not in conflict with neurophysiological observations. To 
this end I describe in Section 2 some of the problems one would like to 
understand and present a bare minimum of "neurophysiology for 
physicists" as well as a dictionary connecting biological concepts to physics 
terminology. Next, a brief description of memory is given; an attempt is be 
made to explain why physicists are interested in this aspect of neural 
modeling and to state the questions we can hope to resolve. Some 
physicists' models are briefly described in Section 3: the Hopfield model, 
the effect of anisotropic bonds, a model with anisotropic and highly diluted 
bonds, and a feedforward layered network. For the last two models one 
can obtain an analytic solution of the dynamics. Section4 presents an 
incomplete history of learning in feedforward networks, starting with the 
perceptron as introduced by Rosenblatt, through the objections raised by 
Minsky and Papert, to the backpropagation algorithm, whose successes 
and limitations will be demonstrated. 

2. S T A T E M E N T  OF THE PROBLEM 

2.1. W h a t  Do Brains Do? 

As stated above, the ultimate goal is to understand how the brain 
works. Of the vast number of perceptual, cognitive, and motor functions of 
the brain,/4'5) I list a few. First of all, it is an incredible memory device. Its 
storage capacity is enormous; it is able to recall information on the basis of 
partial or extremely noisy and even distorted input. Perception, pattern 
recognition, our ability to recognize and classify the objects perceived are 
most impressive. Some brains are capable of thought and are even quite 
competent at solving problems. Brains are responsible for making decisions 
and converting them into action. All these are fascinating aspects of the 
operation of brains. An even more fascinating and complex issue is that of 
learning: what are the mechanisms that enable brains to acquire the 
capacity to operate in the manner described above? Obviously, we learn 
while we function, and this separation into operation versus learning 
should not be taken too sharply. Learning is an adaptive self-organizing 
process; this, in turn, makes it the most intriguing, complex, and difficult 
issue to understand. 
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As stated in the Introduction, I do not see much real progress being 
made toward understanding the problems mentioned. However, quite a lot 
of interesting and useful work is being done, aimed at constructing 
"machines" that function in a manner  that resembles some aspects of the 
operations of a brain. By "machine" I do not mean necessarily an assembly 
of clogs and wheels, but rather computer  algorithms or models, and 
possibly, but not necessarily, their optical or electronic implementations. 
Most of the models or algorithms share a few common features that 
represent the at tempt of the modelers to reflect biological reality, to which 
we now turn. 

2.2. N e u r o b i o l o g y  in a Nutshe l l  

The human brain contains on the order of 1012 nerve cells or 
neurons. (5) A typical neuron is represented schematically in Fig. 1. Three 
distinct regions are identified: the cell body (soma), whose diameter is on 
the scale of tens of micrometers (up to 80 #m for pyramidal cells), the den- 
drites, and the axon. The dendrites form an intricate tree that serves as the 

~ a x o N  

ceil 
body 

ndcifes 

synap 

Fig. 1. The three parts of a neuron: the dendritic tree, cell body, and axon. The branches of 
the axon end at synapses (represented by triangles), by means of which cells communicate. 
(Adapted from Kandel and Schwartz. ~51) 
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main input terminal of the cell. The single axon, whose length and diameter 
vary widely, serves as the output channel. Cells communicate by means of 
synapses, indicated as small triangles in Fig. 1. A pyramidal cell will have 
on the order of 10 a synapses; for special cases, such as the Purkinje cell of 
the cerebellum, the number of contacts may be as high as 150,000! Syn- 
apses are contacts between terminals of the axon of one (presynaptic) cell 
and the dendrites (or cell body) of another (postsynaptic) cell. A schematic 
representation of a synapse is shown in Fig. 2. This is a chemical synapse; 
these are prevalent in cortex, and are believed to be "responsible" for the 
brain's most important attribute--the ability to learn, i.e., the capacity of 
plastic modification. Chemical synapses are strictly unidirectional. The 
means of communication is by release of chemical transmitters by the nerve 
terminal, which diffuse across the synaptic cleft to receptors embedded in 
the membrane of the postsynaptic cell. Release of the transmitters is 
triggered by the arrival of an electric nerve impulse at the nerve terminal. 
This impulse is the result of an action potential that travels down the axon, 
away from the cell body. The action potential is a sharp spike (temporal 

, \ 

dendrite 
Fig. 2. Schematic representation of a synapse. Upon arrival of action potential, 
neurotransmitters are released from the presynaptic cell (upper part)  and diffuse across the 
synaptic cleft to receptors on the postsynaptic cell (lower part). (Adapted from Kandel and 
Schwartz.15)) 
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extent of about 1 msec) of depolarization. At rest, there is a potential dif- 
ference of about 65 mV across the cell membrane (negative inside). During 
passage of an action potential the polarization is briefly reversed (see 
Fig. 3); this is due to opening of ionic channels in the membrane of the 
axon. The action potential occurs when a cell "fires," and it is an 
"all-or-none" phenomenon: its height and duration are fixed. Variation of 
the firing of a cell takes the form of increased frequency of action poten- 
tials. The speed at which the action potential travels down the axon 
depends on its diameter; characteristically, it is on the scale of 1 m/sec. The 
typical time scale for neuronal activity is in the millisecond range. Whether 
a neuron fires or not is determined by the synaptic potentials that appear 
at its "input terminals" due to the arrival of chemical transmitters, which, 
in turn, were released as a result of the activity of the presynaptic cells. 
Hence, neuronal activity is the result of the weighted integration of the 
activities of other cells; the weights are determined by the synaptic 
efficacies. Synapses may be strong or weak, excitatory or inhibitory (in the 
latter case firing of the presynaptic cell inhibits activity of the postsynaptic 
one). Integration of all synaptic potentials takes place at the trigger zone 
(usually the part of the axon adjacent to the soma). 

The only purpose of this telegraphic (and grossly simplified) descrip- 
tion of neurobiology is to present a few facts so that the extent to which 
various models do or do not adhere to biological observations can be 
appreciated. 

2.3. The Elements of Modeling 

The picture of neurobiology presented above is too complex for 
physicists to model. The main conclusion I can draw from this description, 
to be used as a "working definition" of the brain as the object of modeling, 

Fig. 3. 
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An action potential, as measured at a point along the axon of a neuron. The tem- 

poral extent is on the order of milliseconds. 
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is as follows: The brain is an assembly of a very large number of intricately 
coupled degrees of freedom, with complex dynamics. I view our role as 
physicists as one of trying to study, classify, and understand such dynamic 
systems. 

At this point I make a few comments about modeling in general, and 
in this field in particular. All models are supposed to be a simplified 
representation of some reality. The main reason for simplification is the 
hope that analytic statements can be made. This is indeed achieved 
sometimes, but in the process the model may have lost any resemblance to 
a real physical system. This does not necessarily mean that the model and 
its solution are useless or senseless. Many examples to the contrary spring 
to mind, especially in statistical mechanics. To mention only a few, 
modeling a magnet by a two-dimensional lattice of Ising spins with only 
nearest neighbor interactions must have appeared as senseless to the naive 
observer as modeling ice by arrows placed on the edges of a square lattice. 
Nevertheless, a number of basic scientific issues were resolved, and many 
more raised, by Onsager's solution of the Ising model and, more recently, 
by Baxter's work. Exact solutions quite often teach us something; 
sometimes we only learn to ask new questions from them, but even that is 
important. Turning now to the field of neural networks, one indeed 
sometimes has the feeling that "everything goes": everyone invents his or 
her favorite model, there are no rules to the game, and, what is most 
crucial, there is not much unambiguous empirical observation to guide the 
modeler. All this is true, and should be borne in mind, especially when 
claims about possible biological relevance are made. I view making 
unjustified claims as much more dangerous than refusing to draw 
biological comparisons and conclusions, even when temptation to do the 
latter is strong. (6) 

Real biological systems are extremely complex and difficult to model. 
In the process we may simplify and approximate for our convenience; 
however, we should try to keep as many of the basic biological features in 
our model as possible. Since by and large we do not know which are the 
features of central importance, and in any case will not be able to do much 
about any system that faithfully represents biological reality, we should 
view our efforts with all modesty and humility. 

With all this in mind, we turn now to a dictionary that relates 
biological concepts to physical ones. The state of cell i at time t is represen- 
ted by a binary Ising spin Si, which takes the value + 1 if the cell fires and 
- 1  when it is quiescent. This binary representation reflects the 
"all-or-none" feature of the action potential and is a fairly widely accepted 
approximation to neuronal activity. (7) The synaptic efficacies are represen- 
ted by couplings or bonds of the Ising spins: J0 > 0 represents an excitatory 
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synapse that determines the influence of cell j on cell i, while J~ < 0 
corresponds to inhibition. In addition, local thresholds 0i associated with 
each cell translate into local fields. Cell i "decides" to fire according to the 
value of Vi, its membrane potential at the trigger zone, which is compared 
to a threshold 0i, with the probability of firing given by 

Prob(Si = +1 ) = f (  V~- 0~) (1) 

where f is any sigmoid function such as shown in Fig. 4. The width of the 
region in which f increases from near 0 to near 1 is a measure of the 
stochasticity of the process, and translates to "temperature." T. The deter- 
ministic limit ( T = 0 )  is the step function also shown. Throughout what 
follows we assume the deterministic T =  0 limit, unless otherwise stated. 

The dynamics of the system is now determined by the manner in 
which the membrane potential of cell i at time t is generated by the 
activities of all other cells. The widely accepted representation of the 
integration described above is one of a linear weighted sum, given by 

Vi(t + 6t) = ~ JoSj(t) (2) 
J 

Here a discrete time dynamics is assumed. When (2) is used in the T =  0 
limit of (l), the following deterministic dynamic rule results: 

Si(t + 6t)=sign [~ JuSj(t)-Oi] (3) 
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Fig. 4. The probability of firing as a function of the membrane potential. The width of the 
region in which the (dashed) curve rises from 0 to 1 is referred to as temperature T. The deter- 
ministic ( T =  0) limit of such a process is given by the heavy solid lines. 
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Table I. The "Dict ionary" Used to Trans- 
late Terminology of Neural Science into 

Physics, and the Dynamic Rule Used 

Cell i Spin i 
Fires/quiescent Si = + 1 / -  1 

Synaptic efficacies Bonds J~ 
Excitatory Jo > 0 
Inhibitory J0 < 0 

Thresholds 01 Local fields 0i 

The dictionary and dynamic rule are summarized in Table I. In summary, 
neurons are represented by the models we consider as linear threshold 
elements. A neural network is a connected assembly of such elements (spins). 
I turn now to describe a model memory; this aspect has received most 
attention in the recent physics literature. 

2.4. Model Memory 

We would lke to construct a machine that can function as a memory 
device with the following properties (to be explained below): 

1. Content-addressable, associative, noise-tolerant 

2. Distributed, robust 

3. Fast retrieval 

4. Adaptive 

I will explain briefly what is meant by these attributes, by means of a 
simple example. Think of the memory as a box that has an input window 
of N bits and an output window of N bits. It also has a switch that can be 
thrown either to Operation (O) or Learning (L) (see Figs. 5 and 6). In the 
learning stage a set of M key input patterns is presented to the box, and by 
whatever means they become associated with M (or fewer) key outputs. 
Denote the M input patterns by ~n and the outputs by ~ut. During the 
learning stage a mapping is established between these M points of input 
space to the associated points in output space, as shown schematically in 
Fig. 5. For example, we have taught our machine to recognize the image of 
our friend Joe; whenever his image is presented as input, the machine 
responds by printing his name on the output screen. Now throw the switch 
to Operate. First of all, we expect the machine to recognize all the key 
patterns it was taught. Moreover, if a noisy, distorted, or partial key 
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Fig. 5. The learning (L) stage of a memory. In this stage the memory is trained to associate 
M input patterns with M output patterns. In the example shown, presentation of a particular 
caricature elicits the printed characters JOE as its associated response. 

pattern is presented, the machine still should respond with an output that 
is in some sense (to be defined below) "close" to the correct key output. 
These features, presented in Fig. 6, are referred to as the memory being 
noise-tolerant, associative, content-addressable, etc. This property results 
from the fact that the mapping described above contracts the (input) phase 
space; that is, a sizable domain of attraction in input space, around every 
key pattern, is mapped onto a much smaller domain in the vicinity of each 
key output pattern. 

The next test to which we subject our machine is more severe: put it in 
the same room with my son, to whom we give a hammer. The result of this 
interaction is shown in Fig. 7, together with a plot of the quality of the out- 
put versus amount  of damage, as obtained from a particular network. The 

"NOISY" INPUT NOISY OUTPUT 

Fig. 6. Operational stage of the memory. The key pattern (the caricature of Joe) that the 
memory was trained to recognize is indeed perfectly recognized. Furthermore, when a different 
caricature of the same person is presented (shorter hair, frown vs. smile), the resulting output 
is still "close" to the key output. Similar response is expected for presentation of noisy (e.g., 
blurred) key input patterns. 
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Fig. 7. (a) The memory, after interaction with a hammer-wielding opponent. (b) Perfor- 
mance (m is the overlap of the actual output, in response to a key input pattern, with the 
corresponding key output) as a function of damage. This curve was obtained for a particular 
network. 

ability to function at a level close to perfection in spite of sizable damage 
goes by the name of "robustness"; it is possible to have this feature only if 
the memory is distributed, i.e., any particular pattern is spread over the 
entire network. 

From the fact that fast retrieval is required, we only conclude that the 
network should operate in a massively parallel fashion. 

The last aspect mentioned, that of adaptivity, has to do with the 
manner in which the network is expected to learn; discussion of the issue of 
learning is left to Section 4. I now discuss why physicists have been 
interested in modeling memory. 

2.5. Why Physicists? 

So, why did physicists become interested in neural networks in 
general, and memory in particular? The reason is that by making a few 
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extra assumptions, the problem becomes closely related to the extensively 
studied problem of spin glasses. (8) To see this, note that if one uses the 
dynamic rule (3), but (a)flips one spin at a time, and (b)uses symmetric 
bonds, Jo.=J,, then we have precisely the equations that describe 
relaxational dynamics of Ising spins at T =  0! That is, an energy function 
can be defined, 

E= --2 Z JoSiSj-~. OiSt (4) 

and under the dynamic rule (3), E cannot increase; spins will flip until a 
stable state, i.e., a local minimum of the energy function, in which each spin 
is aligned with its internal field, is reached. To make contact with the 
concept of a memory, a further important assumption is made: (c) stable 
states are associated with the stored key patterns. 

Since one is interested in a memory with high capacity, one would like 
to have an energy function that has many local minima, and spin glasses 
have precisely this property. 

In fact, however, the problem of a neural network as a memory device 
is the inverse spin-glass problem. In a spin glass a typical question is 
phrased as follows: given a set of couplings J,7 [-or their probability 
distribution P(Jo)], what is the "energy landscape"? In particular, where 
(in phase space) are the stable states (see Fig. 8)? On the other hand, the 
question relevant to memories is the opposite: given a set of points ~ in 
phase space, can one find a set of couplings Ju such that the resulting 
energy function will have stable states at (or near) ~ ?  By the way, a 

I I , i  I 

Fig. 8. Schematic representation of a potential energy landscape with many local minima r 
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dynamic procedure that finds such couplings constitutes learning in 
spin-glass networks. I now describe a few model neural networks studied 
by physicists in recent years. 

3. S O M E  PHYSICISTS" M O D E L S  

3.1. The Hopfield Mode l  

The assumptions (a)-(c) mentioned above and the connection to spin 
glasses obtained by adopting them are due to Hopfield. (9) To define the 
Hopfield model completely, a choice has to be made for the bonds J~j and 
the local fields 0~. Hopfield chose 0~=0, and for the couplings the 
"Hebbian perscription ''(~~ 

1 M 

JiJ=~ ~ ~#,~Ju (5) 
p = l  

for i ~ j, and Ji~ = 0. To understand 
that with these couplings the energy 

where 

this choice on the simplest level, note 
function can be expressed as 

NM 2 1 
E = - ~ - ~  (m~) + s M  (6) 

m~,=~ Si~i# (7) 
i ~ l  

is the overlap of the spin configuration Si with they pattern #. Up to an 
additive constant, E is now given as the negative sum of squares of the 
overlap of the spin configuration with the M key patterns. For a set of 
random key patterns a random spin configuration will typically have 

m, - 1/x/-N, so that (6) yields E ~- 0; while for Si = ~i, we get E ~- -N/2. 
So we expect that the (random) key patterns are approximate stable states 
of the energy function with the bonds given by (5). Hopfield studied the 
behavior of the network thus defined. A particular pattern v is "stored" by 
the network if an initial state Si(0) near ~ develops under the dynamic rule 
(3) to a stable state S* whose overlap with ~ is large, i.e., m* ~-1. The 
quality of the network was found to depend on the number of stored 
patterns; it performed well if the important parameter 

= M / N  (8) 

was not too large. To demonstrate what is meant by "good performance," I 
present simulations performed by Kinzel. (11) For a network of 400 spins, 30 
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key patterns were used, 29 of which were random, and the 30th had the 
geometrical shape of the letter A. (Note that since each spin is connected to 
every other spin, there is no unique meaning to arranging the spins in any 
geometrical shape; only correlations between the various patterns are 
meaningful.) Now the network was set in an initial state in which 30 % of 
the spins were reversed with respect to the pattern A. In four sweeps 
through the network, the stable state A was reached, as shown in Fig. 9. 
However, it was also found that not all noisy patterns relax to the exact 
key pattern closest to them: sometimes the final state differs a little from 
the key pattern. Moreover, when the noise level is too high (i.e., the 
overlap of the initial state with a key pattern is too small), the network 
relaxes to spurious stable states that are not near the key pattern. This 
remarkable performance of the Hopfield network gives rise to a number of 
questions, such as, What is the limiting value of e for which the key pat- 
terns are stable? What is the effect of introducing stochasticity ( T > 0 )  to 
the system? What are the spurious stable states described above? How 
large are the domains of attraction of the various stable states under the 
dynamic rule (3)?How sharp are the boundaries of these domains of attrac- 
tion? Some of these questions were answered in a remarkable series of 
papers of Ami te ta l .  ~ )  These authors simply took the Hopfield 
Hamiltonian, and solved the equilibrium statistical mechanics of the model. 
This work revealed a most important property of the Hopfield model: it is 
exactly soluble! In the resulting phase diagram (for simplicity, I present it 
as obtained without replica symmetry breaking) there is a phase denoted 
by F in Fig. 10, at low temperatures and small number of stored patterns, 
in which the equilibrium state is characterized by large overlap with a 
single key pattern. In phase F these "ferromagnetic" memory states have 
the lowest free energy. In a different region (SG), a spin-glass phase, the 

Fig. 9. Simulation of a Hopfield network with 400 spins and 30 key patterns, of which 29 are 
random, and one forms the letter A. An initial state is generated by flipping 30 % of the spins 
of the state A and letting the network evolve; after four sweeps of the lattice the stable key 
pattern A is reached. (From Kinzel. ol)) 

822/51/5-6-2 
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Fig. 10. Phase diagram of the Hopfield model, as obtained without replica symmetry 
breaking. (~2) In the F phase the memory states (large overlap with one key pattern) have the 
lowest free energy. In the SG phase the memory states are unstable; the equilibrium 
"spin-glass" states have small overlaps with key patterns. In the F + SG phase the memory 
states are metastable; their free energy is higher than that of the spin-glass states. 

ferromagnetic states are unstable, and only spin-glass states, whose overlap 
with key patterns is small, are stable. In the region between F and SG 
(denoted F + SG), both kinds of states are stable, but the spin-glass states 
have lower free energy. At high temperatures a paramagnetic phase is 
found. The problem of modeling a memory, as stated above, is a dynamic 
one: will a noisy key pattern flow to a stable state that is close to the 
(noiseless) key pattern? On the other hand, the phase diagram was derived 
for a static, equilibrium problem; properties are averaged over all states of 
the spin system, stable and unstable, each with its Boltzmann weight. 
Nevertheless, one expects and indeed finds (as confirmed by simulations) 
that many results of the dynamics discussed above agree with and can to a 
large extent be predicted by the equilibrium calculation. For example in the 
SG and Para phases the system does not relax to an embedded pattern. 
The existence of a limiting value of c~ has also been confirmed by 
simulations. For more results on the basic Hopfield network and its exten- 
sions the reader is referred to various reviews. (1'2) A number of basic 
properties of the Hopfield model and its solution are summarized as 
follows: 
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1. Symmetric couplings are assumed; cell i has the same effect on j as 
j o n i .  

2. The network is fully connected. 

3. Functional uniformity is assumed; all cells are equivalent in 
receiving input, processing the information, and generating an 
output. 

4. Input is associated with the initial state, output with the final 
(stable) state of a dynamic process. "Recognition" corresponds to 
a persistent firing pattern of cells. 

5. The key patterns are random. 

6. The dynamics has many spurious stable states, 

7. No solution of the dynamics exists. 

Even though these points should be borne in mind, especially when 
claims of relevance to biology are made, the Hopfield model and its 
solution are one of the most important contributions of physicists to the 
field of neural networks. A very similar model, with the same choice of 
couplings (5), was introduced much earlier by LittleJ TM However, the 
Little model has parallel dynamics, there is no associated energy function, 
and no corresponding equilibrium statistical mechanics. 

The fact that there is a Hopfield Hamiltonian allowed investigation of 
the attractors of the associated dynamics by first solving the equilibrium 
problem. Thereby ~4) concepts such as the thermodynamic limit, phase 
diagram, and phase transitions were introduced to the field of neural 
networks. In addition, the fact that the model is exactly soluble has 
provided the field with a standard; various networks are compared with the 
Hopfield model in terms of their properties, phases, and storage capacity. 
Having exactly soluble models should also raise the standards concerning 
the quality of work done on neural networks outside the physics com- 
munity. 

I now describe two interesting extensions or modifications of the 
Hopfield model. The first addresses analytically the effect of asymmetric 
bonds; the second solves exactly the dynamics of an asymmetric and 
extremely diluted Hopfield network. 

3.2, Hopfield-Type Models with Anisotropic Bonds 

The assumption of symmetric bonds is probably one of the most 
biologically unrealistic features of the Hopfield model. Hence, an obvious 
direction for extension or modification is lifting this restriction. The first 
analytic attempt in this direction was made by Hertz etaL ~4) These 



758 Domany 

authors considered the dynamics of a network in which the discrete 
Isingqike spin variable is replaced by a continuous one, ~bi. The dynamic 
equations used are 

dr 
= --rq~ i -  utp~ + ~ wuJoq~ ] + Oi + ~ (9) 

dt 
J 

for all sites i=  1 ..... N. The variables ~ represent a Gaussian noise, the 
couplings Jo are of the form (5) as used by Hopfield, but the new bond 
variables wij introduce asymmetry in the system. For each direction of each 
bond, w U and wj~ are independently chosen from the distribution 

p ( w )  = p6(w - 1) + (1 - p)  6(w) ( lo )  

That is, the bond that determines the effect of cell j on i is either zero or 
given by Jij. Hertz et al. found that the spin-glass phase becomes unstable 
by the anisotropy, while the memory (i.e., ferromagnetic) states do not 
become degraded. However, it should be noted that as soon as anisotropic 
bonds are introduced, cycles of various periods may appear as stable states 
of the network. With asymmetric bonds there is no Hopfield Hamiltonian, 
no meaning of equilibrium statistical mechanics, and no exact solution is 
available. 

At this point, however, Derrida eta/.  (16) noticed that if in addition to 
the asymmetry introduced by independently choosing w~ and wyi according 
to (10), one also takes the limit of extreme dilution, e.g., p ~ 0 as N-~ ~ ,  
with 

p < (log N) /N  (11 ) 

and the number of stored patterns is given by 

M = ~ p U  (12) 

then the model can be solved exactly! This is quite interesting; the model is 
defined in terms of its dynamics, as given by Eq, (3), and an exact solution 
means that its dynamics is soluble. The "canonical" problem of dynamics 
can be stated as follows: 

Given an initial state Si(0), such that its initial overlaps with the key 
patterns are given by 

m,(0) = 0 for # # v ;  my(0) > 0 (13) 

and the spin configuration develops in time, what are the values of the 
overlaps mu(t)? 
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With the initial condition (13), Derrida etal .  find that only mv(t)= 
m(t)  vaO, and the solution m(t )  is given, for deterministic discrete time 
dynamics, in the form of a map, or recursion relation: 

m(t  + 6 t )=  (2/x~)fo'(')/(2~)'"2dyexp( - y2) (14) 

That is, the overlap at time t + 6t is determined by its value at time t! 
Hence the long-time behavior of the model is governed by the stable fixed 
points of (14). The fixed point value m* is shown as a function of c~ in 
Fig. 11. The network can function as a memory for ~ < c~ c = 2In; in this 
regime there is a stable fixed point with m * >  0, while for c~ > ~c the only 
fixed point has vanishing overlap, and hence no recall of the key pattern. 
The transition is continuous, i.e., the limiting overlap goes to zero as 
~--*cq. It is interesting to note that the recursion relation (14) has 
appeared previously; (11'17~ it gives exaxtly the first time step of a different 
model, but is only approximate for later times. This model is a layered 
feedforward neural network, whose dynamics is also exactly soluble, and to 
which we now turn. 

Fig. 11. 
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3.4. A Feedforward  Layered Neural N e t w o r k  

Feedforward neural networks have been studied for many years, and a 
brief history of the subject is given in Section 4. A layered feedforward 
neural network, also called multilayer perceptron, was recently introduced 
to the physics literature as a model associative memory/171 Introduction of 
this model was motivated by a number of questions we hoped to resolve by 
studying it. We thought of feedforward networks as the antithesis of the 
point of view represented by the Hopfield model. We wanted to know 
whether the properties of the Hopfield model that made it an impressive 
memory depended at all on some of the assumptions made. In particular, 
we wanted to know whether having symmetric bonds, and therefore an 
underlying Hamiltonian, is an important ingredient of the design of a 
network. Another aspect is that of feedback; it is obviously of central 
importance for learning, but is it important for the operation of the 
network, as claimed? To our surprise we found that a simple feed-forward 
layered network has most of the attractive properties that characterize the 
performance of the Hopfield model. Moreover, our layered network, as 
discovered subsequently, is also analytically soluble; (18) an exact solution of 
its dynamics was obtained. We now turn to describe the architecture and 
operation of the layered network, summarize the comparison with the 
Hopfield model, and present a few results derived from the solution. 

The basic units of our network are binary linear threshold elements of 
the kind described above. These elements change their state in discrete time 
steps, according to the dynamic rule (3) with 0i = 0, as in Hopfield's model. 
Moreover, the spins are connected by Hebbian bonds of the form (5). 
However, the architecture of the network is different: it has l=  1,..., L 
layers, with i=  1 ..... N spins (cells) S I per layer. Each cell is connected to all 
cells of the neighboring layers (see Fig. 12). The bonds are, however, 
unidirectional: the state of layer l+  1 is determined by the state (at the 
previous time step) of layer l. In the deterministic limit, the dynamic rule is 
given by the properly modified form of (3) 

SI + 1 = sign J/j 

Note that all spins in a given layer are updated simultaneously. The 
couplings or bonds Jb are chosen by (5) 

e N  

J,~.= (l/N) Z ~I, + ~.~ (16) 
v = l  

where v = 1,..., aN are the stored key patterns. 
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Fig. 12. A layered feedforward network. The state of a cell in layer l+ 1 is determined by the 
states of all cells of layer l. Input patterns are presented to the first (top) layer, and the output 
is read out from the last. 

It should be noted that now each key pattern carries a layer index. 
This is a central feature that characterizes this class of model neural 
networks; it has of conceptual as well as technical significance. Concep- 
tually, it represents the fact that only the first layer of a network is in direct 
contact with the "external world," and hence only on the first (input) layer 
are the representations of the key patterns externally dictated. On all sub- 
sequent layers the system is free to choose an internal representation of any 
key pattern. In particular, with proper self-organization of internal and 
output representation, obtained in an iterated learning procedure, we have 
shown (17) that the network is capable of perfect recall of key patterns and 
excellent recognition of noisy input patterns. No such iterated learning is 
allowed in the network reviewed here. We assume that the internal 
representations ~ of the key patterns are randomly chosen; all ~ = +1 i , v  i , v  - -  

with equal probability. It is precisely this fact of the independent choice of 
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representations on different layers that technically allows analytic solution 
of our model. The solution yields information on the time development of 
the system: the first layer is set in an initial state, which determines the 
state of the next layer at the.next (discrete) time step, and so on. Hence, 
obviously our model can also be viewed as one with a single layer of cells, 
but time-dependent couplings; i.e., a cellular automaton in which the 
dynamic rule is a (random) function of time. 

By exact solution of our model we mean the same as described above; 
i.e., given an initial state with overlap m ~ with a key pattern, we have a 
recursive formula that yields the overlap on any subsequent layer/time step 
(averaged over all key patterns 4). The recursions have the form 

where 

a l 

mr+ 1 = (2/n)1/2 fl exp( - y2/2) dy = erf(ml/(2~qt) I/2) 

q(+' = 1 + (2/~n) e x p [ -  (d)2], a'=mt/(7q' )  '/2 

(17) 

wi th  m 1 set by the initial state and q l =  1. The equation for m 2 was  

obtained previously (11'17) and is the same as Eq. (14) of Derridaetal.  (16~ 
Here, however, it is exact only for going from the first to the second layer; 
for the evolution on subsequent layers it is only approximate. This 
approximation is modified in (17) by the fact that the "width" parameter qt 
also changes with l, as if the effective value of c~ were renormalized by 
increasing layer index/time. 

The long-time, large-L behavior of the overlap is determined by the 
fixed points of (17), m t = m  * (the recursion for q is parasitic, dragged 
bymt). The solution of the fixed point equation is plotted versus c~ in 
Fig. 13. The m* = 0 fixed point is always stable; for e < ~c = 0.269, however, 
two additional solutions exist. The branch with higher values of m* is 
stable and the lower branch unstable. For the relevant parameters of the 
problem, namely ~ and the initial overlap m 1, the dynamics governed by 
this fixed point structure gives rise to the phase diagram of Fig. 14. For 
m ~ >m~ the limiting overlap m* r  and its value is given by the upper 
branch of Fig. 13. As the boundary of this phase is crossed, m* jumps 
discontinuously to zero; the transition is first order. 

Such discontinuous change of the limiting overlap appears to be a 
fairly common feature of various neural network models. (~9) In many 
instances it is not easy to see this in numerical simulations. One may find 
that for a finite-sized system the average m* (averaged over the various 
patterns 4, for example) is a smooth function of some variable. However, as 
the size is increased, the function may (slowly) become steeper. In such 
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cases it is more revealing to consider the histograms of m*, as 
demonstrated in Fig. 15. As can be clearly seen, especially for N =  100, even 
though the average m* is a smooth function of m 1, the histograms reveal a 
pronounced bimodal distribution, with the weights of the two peaks 
varying relatively slowly with m*. This, however, is a finite-size effect; as 
the system size increases, the "jump" from the distribution centered on 
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[-larger than the critical ml~ (ct = 0.1) of Fig. 14] most members of the ensemble flow to final 
overlap near 1. This fraction increases with system size N. For initial overlap of 0.08 < m~ the 
"false" peak at m ~ 1 shrinks as the system size increases. 
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rn* = 0  to that near 1 becomes sharper. Finite-size effects are relatively 
unimportant away from the transition region; in this regime (see Fig. 16), 
excellent agreement with the exact solution (valid for N--* oe) is obtained, 
even for N as low as 200. As discussed above, finite-size effects become 
important as the phase boundary is approached. This can  be seen to some 
extent in Fig. 16; while the upper two curves (corresponding to initial 
overlaps m ~ well within the m* # 0  phase) exhibit perfect agreement with 
simulations, development from m 1 = 0.2 does deviate slightly from the exact 

1 solution. This is due to the fact that near m c some members of the 
simulated ensemble flow to the "wrong" phase. However, as N increases, 
the relative weight of these "errors" decreases. The lower curve of Fig. 16 
shows another interesting effect. Even though the final overlap is zero, 
initially the overlap increases. Similar increase was found for the first time 
steps of the Little {20) and Hopfield {2~) models. 

It is interesting to note that the model exhibits "critical slowing 
down." Relaxation to the limiting value of m* is exponential; rnt-rn*~ 
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exp( - / /v ) .  The relaxation rate z is determined by the recursion relations 
(17), linearized near m*. Since as e ~ e~. two branches merge, one stable 
and one unstable, the fixed point at e~. must be marginally stable, and 
hence ~ must diverge. Indeed, we find (~8) that ~ ~ ( e c - ~ )  -~/2. 

To summarize our discussion of this feedforward layered network, we 
list some of its properties as compared to the Hopfield model. 

1. All couplings are unidirectional. 

2. Only cells in adjacent layers are connected; full connectivity 
between neighboring layers. 

3. Functional asymmetry: the first (last) layer serves as the input 
(output) terminal of the network. 

4. Input sets the first layer in an initial state: the state of the last 
layer is read out as output. 

5. Random key patterns are used as input, output, and internal 
representation. The "image" of a key input pattern on subsequent 
layers can be determined (17) by a self-organizing learning 
procedure. 

6. There is no meaning to "stable states"; however, every final state 
of the last layer is read out, whether it is near a key output pattern 
or not. This may pose the same difficulties as the spurious states of 
the Hopfield model. 

7. The dynamics of the network is exactly soluble. 

The layered feedforward network described above as a model melory 
is also called a multilayer perceptron. The perceptron has a long, 
interesting, and instructive scientific history, which is the topic of the next 
section. 

4. PERCEPTRONS 

4.1. Def in i t ion 

Imagine a machine that is able to recognize our friend Joe from Sec- 
tion 2. That  is, as the "eye" of the machine is pointed in various directions, 
a warning light goes on whenever Joe appears in its field of vision. For  any 
other image this light is off. This can be viewed as a classification task: the 
machine classifies all possible inputs to either Joe or non-Joe. Furthermore, 
the machine acquires this skill in a training session with its master, in an 
adaptive fashion! And we still have not mentioned the most amazing aspect 
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of this machine: there is a convergence theorem associated with its learning 
algorithm! 

The perceptron, (22) invented and studied by F. Rosenblatt  in the 1950s 
and 1960s, was claimed to be precisely such a machine. It is represented in 
Fig. 17. (23) The image is projected onto a screen, which is divided into 
square cells. A cell will be either on or off, depending on, say, the amount  
of integrated light on it. This set of 0's and l 's  is viewed by a single layer of 
binary decision elements, represented as small, cubic boxes in Fig. 17. 
Every box "sees" a preassigned finite field of vision, i.e., set of cells of the 
screen. As a simple example (not drawn), imagine that each box sees a 2 x 2 
square of cells of the screen, and each such square has a single box 
associated with it. Now these binary decision elements respond to the pat- 
tern that appears in their field of vision by generating an output of either 0 
or 1. Denote the output of decision element i as Si. We get S i =  1 if and 
only if the pattern seen by box i belongs to its "truth class." The truth class 
of each box is hard-wired and does not change during the learning process 
(described below). For  example, in the case of the 2 x 2 field of vision we 
may choose the set of patterns shown in Fig. 18 as the truth class: 
occurrence of one of these patterns in the field of element i gives rise to 

 FBINARY DECISION 
SCREEN 

0 UTPUT 
UNIT 

Fig. 17. The Perceptron (adapted from Ref. 23). The image presented is projected onto a 
screen. Information is fed into local decision elements, whose binary (0, 1) response is deter- 
mined by the pattern in their field of vision. The weighted sum of these responses determines 
the state (0, 1) of the single output unit. 



768 Domany 

Fig. 18. A particular "truth class" of the local decision elements. Whenever one of the 
patterns shown appears in the 2 x 2 field of vision of decision element i, it responds by setting 
its output to Si= 1. 

S i=  1, and S i=  0 otherwise. Hence, every image projected on the screen 
draws an array S~ from the single layer of binary decision elements. This 
array is fed into the single output unit that represents the bulb that should 
light up in response to Joe. The output unit is a linear threshold element, 
which takes the value S~ 0, 1 according to the rule (~9 is the Heaviside 
function) 

(18) 

There is quite a lot that such a simple perceptron can do. For  example, 
using the truth class of Fig. 18 with Ji--- 1 and 0 = N -  1, where N is the 
number of decision elements, the output unit will have the value S ~ 1 
only in response to an input in which no two adjacent black squares are 
allowed. For  many other examples see Ref. 23. 

The next question concerns one's ability to determine a set of 
couplings Ji that will ensure performance of an assigned task. This is 
accomplished in the course of a learning session. 

4.2. The Perceptron Learning Rule and Convergence Theorem 

To start the learning session, the perceptron is initialized; all bonds are 
assigned some random value. Now two stacks of input images are 
prepared; one contains images (of Joe) that are supposed to draw S ~ - 1, 
and the other images (non-Joe) that should elicit the opposite response. 
Now randomly pick an image from one of the stacks, and present it to the 
perceptron. The layer of decision units translates the image to an array of 
Sour = 0, 1, which determines via Eq. (18) the corresponding response of the 
output unit. Depending on this response, we now allow modification of the 
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bonds, according to the perceptron learning rule, which can be stated as 
follows(24): 

1. Correct response generates no change. 

2. Miss (image of Joe draws S ~ 0) causes modification according 
to 

Jr -+ Ji + tlSi (19a) 

3. False alarm (response of S ~ 1 to non-Joe input) gives rise to 

Jr-~ J i -  ~Si (19b) 

with 0 < r/< 1. This learning rule is easily understood; a miss means that 
the sum ~ JiSi is too small. To increase it, those Ji that can raise the value 
of the sum (for the pattern just presented) are increased. The opposite is 
achieved in the case of a false alarm. This extremely simple learning rule 
has been reinvented and renamed many times since. The most interesting 
aspect of this rule is the existence of the associated perceptron convergence 
theorem. It states the following(24): 

If there exists a solution J*, then the perceptron learning rule will con- 
verge to some solution in a finite number of steps for any initial choice of 
the couplings. 

Having a simple, transparent, local learning rule and an associated 
convergence theorem is quite impressive. In fact, apparently Rosenblatt 
was so impressed by the perceptron that on various occasions he made 
very strong statements about its power and potential. These statements 
have sufficiently disturbed and upset a number of Rosenblatt's colleagues 
that they spent lots of time and effort investigating the properties of percep- 
trons. These endeavors culminated in a book by Minsky and Paper (24) in 
which they demonstrated that there is a large class of tasks that percep- 
trons are unable to perform. The convergence theorem starts with an "if"; 
when there is no solution, obviously no learning algorithm will converge to 
one! And, alas, the class of unsolvable problems is quite large. The source 
of this class of unsolvable problems, as well a possible way to overcome it, 
is discussed next. 

4.3. Unsoluble Problems and Their Solution 

To understand the source of the above-mentioned unsolvability, one 
should first understand how the perceptron solves a classification problem. 
Each input pattern is translated by the N binary decision elements into an 
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array Si = 0, 1. Hence, the two groups of inputs (Joe and non-Joe) can be 
represented as points in an N-dimensional space. The perceptron tries to 
find a hyperplane in this space that separates the two groups. Obviously, 
not every two groups of points is separable by a linear manifold, hence the 
class of problems that cannot be solved by the perceptron. The most 
notable example of such a problem is that of identifying connected versus 
disconnected figures. ~24) Here I choose to present the simplest example, that 
of an XOR gate. (25) 

Consider the perceptron of Fig. 19a; it has two decision elements and 
one output element. Suppose one is interested in a solution of the XOR 
problem: that is, whenever one and only one of the inputs is 1, the output 
has to be 1, and 0 otherwise, as shown in Fig. 19b. A solution means that 
there is a set J~, J2, and 0 such that S out = 1 if and only if J~ S~ + J2 $2 > 0. 
To see that such a solution cannot be found, note Fig. 19c: input space 
consists of four points, and the two solid circles at (1, 0) and (0, 1) cannot 
be separated by a straight line from the two open circles at (0, 0) and (1, 1). 
This is the prototypical failure of perceptrons that has sharply reduced 
interest in them since Minsky and Papert published their book. The 
natural question to ask is, How can this problem be overcome? One simple 
solution is provided by introducing hidden units, thereby extending the 
network to multilayer perceptrons. Indeed, Fig. 20a demonstrates how 
inserting a hidden layer of three cells between input and output, with the 
couplings and thresholds as indicated, produces a solution of the XOR 
problem. To see how this was accomplished, note Fig. 20b: the four input 
points are now embedded in a three-dimensional space defined by the eight 

(a) (b) (c) 
81 82 82 

Oo 
sOUt 

S l  

Fig. 19. (a) A Perceptron with two input units and a single output attempts to solve the 
XOR problem. (b) The association of inputs and required in order to solve this problem. 
Linear threshold elements that operate according to Eq. (18) are unable to solve the problem. 
(c) No straight line can separate the four points of in the manner indicated (solid versus open 
circles). 
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(a) (b) 
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Fig. 20. (a) The Perceptron of Fig. 19 with a hidden layer of three cells S~. With the 
indicated values of the weights Ji (next to the connecting lines) and the thresholds (in the 
boxes) this perceptron solves the XOR problem. (b) This is accomplished by mapping the four 
points of Fig. 19(c) onto the four points indicated here; clearly, separation (by a linear 
manifold) into the required groups is now possible. 

states of the three hidden units. These four points are now easily separated 
by a linear manifold (plane) into two groups, as desired. This simple exam- 
ple demonstrates that adding hidden units increases the class of problems 
that are soluble by feedforward, perceptronlike networks. However, by this 
generalization of the basic architecture we have also incurred a serious loss; 
there is no longer a learning rule. 

4.4. Learning in Mult i layer Perceptrons 

The canonical problem of learning in layered feedforward networks 
can be stated as follows. A learning rule is an algorithm that can be used to 
locate a set of bonds and thresholds that will map a given set of points in 
input space (i.e., on the first layer) to another given set of points in output 
space. Solution of this problem was simple in the case of the single-layer 
perceptron; there it was easy to identify the "culprit," i.e., the bond that 
was too strong or weak and thereby helped produce a wrong answer. For  
multilayer networks it is not clear which of the bonds that connect input to 
output is responsible for mistakes and successes. This is called the "credit 
assignment problem." It appeared to be solved by the recent introduction 
of the back propagation algorithm by Rumelhart  eta/. (25'26) This algorithm 
has appeared before under other names, 127) but these authors have 

822/51/5-6-3 
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eloquently demonstrated its power by showing that it can be used to locate 
solutions for a number of problems. One of the most elegant of these is the 
solution of the parity problem. One wants a classification scheme that dif- 
ferentiates inputs with an even number of l's from those with an odd num- 
ber. This problem is a fairly difficult one, since changing any single input 
unit throws the output from one class to the other. The XOR problem is a 
parity problem with two input units. 

Rumelhart et al. (25J studied this problem with up to eight input units. 
A solution found by the backpropagation algorithm is shown in Fig. 21. In 
this solution the network found internal representations that serve as the 
column of mercury in a thermometer; all l's are bunched to the left of the 
intermediate layer. That  is, the state of the intermediate layer is determined 
by the number of l's in the input, irrespective of where they occur. The 
alternating signs of the bonds from the second layer to the output cell 
ensure that the weighted sum of the second layer's activities will be either 0 
or 1, depending on the parity of the number of l's. Such a solution was 
found by the network, for four input cells, after about 3000 presentations of 
each (of the 16) input patterns. 

Convergence of the learning algorithm to a solution that represents a 
certain logic is quite fascinating. In particular, the networks ability to 

81 S2 S 3 84 

i I 
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sOUt 

Fig. 21. A solution of the parity problem found by the backpropagation algorithm (as 
reported in Ref. 25). Solid connecting lines represent weights Ji = 1 ;  dotted lines correspond to 
Ji= -1; numbers in the boxes stand for thresholds. 
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generate meaningful internal representations on the hidden layer is an 
indication that more progress along such lines may be expected. 

To summarize: so far we have seen that introducing internal layers 
enlarges the class of problems soluble by feedforward networks; the 
backpropagation learning algorithm seems to resolve the credit assignment 
problem, and was shown to find "logical" solutions of nontrivial tasks. 

However, unfortunately there is bad news following the good news. 
Something important is still missing: there is no convergence theorem. In 
fact, no theorem of the kind proved for the single-layer perceptron exists 
for backpropagation. Backpropagation is essentially a minimization 
procedure; it minimizes a cost function that measures the deviation of 
actual outputs of the network from the desired ones, over the space of 
weights and thresholds. As with most minimization procedures, it may get 
stuck in local minima, and there is no way to predict a priori either its rate 
of success, i.e., when an absolute minimum is found, or the time needed to 
attain it. 

Finding a learning algorithm for multilayer systems for which a 
convergence theorem holds, or, at least, one for which the probability for 
success (and the time it takes) can be estimated, appears to be the most 
important immediate challenge of the field of neural networks. 

5. S U M M A R Y  

In this brief overview I tried to present a few aspects of research in the 
field of neural networks. Naturally ! emphasized the contribution and 
possible role of physics in posing questions and getting answers to them. 
However, I also made an attempt to review a particular limited direction of 
research conducted by nonphysicists. As to the contribution of the physics 
community, I consider introduction of the Hopfield model, with its 
Hamiltonian and associated statistical mechanics, to be of central impor- 
tance. This model has definitely enriched the field; new concepts were 
introduced and the notion of soluble models, in the sense of statistical 
mechanics, will probably play a role in future developments. I described 
how the extent to which attractive properties of the Hopfield model depend 
on a number of its underlying assumptions was investigated by solving the 
dynamics of a layered feedforward network. I believe that the most relevant 
area of potential contribution by physicists to neural networks concerns 
their dynamics. Enumeration and classification of attractors and studying 
means of controlling their size and position in phase space constitute only 
a partial list of tasks for which a physics background is useful. It is hoped 
that research along such lines will help address what appears at the 
moment as the central question of the field, i.e., that of learning. In 
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particular, it would be gratifying if physicists could assist in the quest for 
learning algorithms for which convergence theorems can be proven, 
applicable to architectures that can solve wide classes of problems. 
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